Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2321447121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593076

RESUMO

The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.


Assuntos
Fusão de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Simulação de Dinâmica Molecular , Proteínas R-SNARE , Sintaxina 1 , Neurotransmissores , Lipídeos
2.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512129

RESUMO

The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.


Assuntos
Fusão de Membrana , Vesículas Sinápticas , Sintaxina 1 , Animais , Camundongos , Constrição , Camundongos Knockout , Neurotransmissores , Proteínas SNARE , Sintaxina 1/genética
3.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260673

RESUMO

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement: We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.

4.
Cereb Cortex ; 33(23): 11354-11372, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37851709

RESUMO

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.


Assuntos
Neurônios , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia
5.
Elife ; 122023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622100

RESUMO

Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers. We fused the state-of-the-art reporter iGluSnFR to glutamate receptor auxiliary proteins in order to target it to postsynaptic sites. Chimeras of Stargazin and gamma-8 that we named SnFR-γ2 and SnFR-γ8, were enriched at synapses, retained function and reported spontaneous glutamate release in rat hippocampal cells, with apparently diffraction-limited spatial precision. In autaptic mouse neurons cultured on astrocytic microislands, evoked neurotransmitter release could be quantitatively detected at tens of synapses in a field of view whilst evoked currents were recorded simultaneously. These experiments revealed a specific postsynaptic deficit from Stargazin overexpression, resulting in synapses with normal neurotransmitter release but without postsynaptic responses. This defect was reverted by delaying overexpression. By working at different calcium concentrations, we determined that SnFR-γ2 is a linear reporter of the global quantal parameters and short-term synaptic plasticity, whereas iGluSnFR is not. On average, half of iGluSnFR regions of interest (ROIs) showing evoked fluorescence changes had intense rundown, whereas less than 5% of SnFR-γ2 ROIs did. We provide an open-source analysis suite for extracting quantal parameters including release probability from fluorescence time series of individual and grouped synaptic responses. Taken together, postsynaptic targeting improves several properties of iGluSnFR and further demonstrates the importance of subcellular targeting for optogenetic actuators and reporters.


Assuntos
Sinapses , Transmissão Sináptica , Ratos , Camundongos , Animais , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Neurotransmissores/metabolismo
6.
Cell Rep ; 41(13): 111882, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577376

RESUMO

Cholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons. We show that ORP2 preferentially localizes to the presynapse. Loss of ORP2 reduces presynaptic cholesterol levels by 50%, coinciding with a profoundly reduced release probability, enhanced facilitation, and impaired presynaptic calcium influx. In addition, ORP2 plays a cholesterol-transport-independent role in regulating vesicle priming and spontaneous release, likely by competing with Munc18-1 in syntaxin1A binding. To conclude, we identified a dual function of ORP2 as a physiological modulator of the synaptic cholesterol content and a regulator of neuronal exocytosis.


Assuntos
Proteínas de Transporte , Neurônios , Transmissão Sináptica , Animais , Camundongos , Transporte Biológico , Colesterol/metabolismo , Exocitose , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Proteínas de Transporte/metabolismo
7.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446572

RESUMO

Autoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression. To address this issue, monoclonal autoantibodies were isolated from a young girl with a range of neurologic symptoms, some of which reacted with specific GABAA receptor (GABAAR) subunits, α1-subunit and α1γ2-subunit, which in this study we have characterized in detail using a combination of cellular imaging and electrophysiological techniques. These studies in neurons from wild-type mice (C57BL/6J; RRID:IMSR_JAX:000664) of mixed-sex revealed that the α1 and α1γ2 subunit-specific antibodies have differential effects on the GABAA receptor. Namely, the α1-antibody was found to directly affect GABAA receptor function on a short time scale that diminished GABA currents, leading to increased network excitability. On longer time scales those antibodies also triggered a redistribution of the GABAA receptor away from synapses. In contrast, the α1γ2-antibody had no direct effect on GABAA receptor function and could possibly mediate its effect through other actors of the immune system. Taken together, these data highlight the complexity underlying autoimmune disorders and show that antibodies can exert their effect through many mechanisms within the same disease.


Assuntos
Encefalite , Receptores de GABA-A , Animais , Camundongos , Receptores de GABA-A/metabolismo , Autoanticorpos/metabolismo , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico
8.
Neuron ; 110(17): 2815-2835.e13, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35809574

RESUMO

Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.


Assuntos
Dinamina I , Vesículas Sinápticas , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo
9.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638903

RESUMO

SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A's JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A's JMD; and (3) palmitoylation deficiency mutations in STX1A's TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A's JMD regulates the palmitoylation of STX1A's TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A's JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.


Assuntos
Lipoilação , Fusão de Membrana , Animais , Mamíferos/metabolismo , Fusão de Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Proteínas SNARE/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo
10.
J Neurosci ; 42(15): 3253-3270, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35241491

RESUMO

Anti-NMDA receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder associated with autoantibodies against NMDARs, which cause a variety of symptoms from prominent psychiatric and cognitive manifestations to seizures and autonomic instability. Previous studies mainly focused on hippocampal effects of these autoantibodies, helping to explain mechanistic causes for cognitive impairment. However, antibodies' effects on higher cortical network function, where they could contribute to psychosis and/or seizures, have not been explored in detail until now. Here, we employed a patient-derived monoclonal antibody targeting the NR1 subunit of NMDAR and tested its effects on in vitro cultures of rodent cortical neurons, using imaging and electrophysiological techniques. We report that this hNR1 antibody drives cortical networks to a hyperexcitable state and disrupts mechanisms stabilizing network activity such as Npas4 signaling. Network hyperactivity is in part a result of a reduced synaptic output of inhibitory neurons, as indicated by a decreased inhibitory drive and levels of presynaptic inhibitory proteins, specifically in inhibitory-to-excitatory neuron synapses. Importantly, on a single-cell level hNR1 antibody selectively impairs NMDAR-mediated currents and synaptic transmission of cortical inhibitory neurons, yet has no effect on excitatory neurons, which contrasts with its effects on hippocampal neurons. Together, these findings provide a novel, cortex-specific mechanism of antibody-induced neuronal hyperexcitability, highlighting regional specificity underlying the pathology of autoimmune encephalitis.SIGNIFICANCE STATEMENT It is increasingly appreciated that the inadvertent activation of the immune system within CNS can underlie pathogenesis of neuropsychiatric disorders. Although the exact mechanisms remain elusive, autoantibodies derived from patients with autoimmune encephalitis pose a unique tool to study pathogenesis of neuropsychiatric states. Our analysis reveals that autoantibody against the NMDA receptor (NMDAR) has a distinct mechanism of action in the cortex, where it impairs function of inhibitory neurons leading to increased cortical network excitability, in contrast to previously described hippocampal synaptic mechanisms of information encoding, highlighting brain regional specificity. Notably, similar mechanism of NMDAR-mediated inhibitory hypofunction leading to cortical disinhibition has been suggested to underlie pathology of schizophrenia, hence our data provide new evidence for common mechanisms underlying neuropsychiatric disorders.


Assuntos
Encefalite , Receptores de N-Metil-D-Aspartato , Autoanticorpos/metabolismo , Doença de Hashimoto , Humanos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo
11.
J Neurosci ; 42(14): 2856-2871, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35193927

RESUMO

Synaptotagmin-1 (SYT1) is a synaptic vesicle resident protein that interacts via its C2 domain with anionic lipids from the plasma membrane in a calcium-dependent manner to efficiently trigger rapid neurotransmitter (NT) release. In addition, SYT1 acts as a negative regulator of spontaneous NT release and regulates synaptic vesicle (SV) priming. How these functions relate to each other mechanistically and what role other synaptotagmin (SYT) isoforms play in supporting and complementing the role of SYT1 is still under intensive investigation. In this work, we analyzed three putative functions of SYT1 in exocytosis by systematically varying its expression in autaptic hippocampal glutamatergic neurons from mice of either sex. We find that regulation of release probability is most sensitive to variation of expression levels, whereas its impact on vesicle priming is least sensitive. Also, loss of SYT1 phenotypes on spontaneous release and vesicle priming is compensated in less mature synaptic cultures by redundant support from SYT7. Overall, our data help in resolving some controversies in SYT1 functions in exocytosis and in our understanding of how SYT1 contributes to the pathophysiology underlying SYT1-related human neurologic disorders.SIGNIFICANCE STATEMENT Our work clarifies the functions of SYT1 protein in synaptic vesicle priming and spontaneous and calcium-evoked neurotransmitter release and analyzes whether these occur at different stages of synaptic responses by examining their relative sensitivity to protein concentration at the synaptic terminal. We demonstrate that these synaptic functions are unequally sensitive to both protein levels and neuronal stage, indicating that they operate under distinct molecular mechanisms. Furthermore, we analyze how these functions are modulated by another synaptotagmin isoform expression. We show that to understand the phenotype displayed by SYT1 knock-out neurons (Syt1-/-) is necessary to consider the interplay between SYT1 and SYT7 molecules at the presynaptic terminal.


Assuntos
Cálcio , Vesículas Sinápticas , Sinaptotagmina I , Animais , Cálcio/metabolismo , Exocitose/fisiologia , Camundongos , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
12.
Elife ; 102021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779770

RESUMO

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C1C2B region with the plasma membrane: (i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and (ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here, we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Transporte Biológico , Fenômenos Biofísicos , Comunicação Celular , Membrana Celular/metabolismo , Células Cultivadas , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Knockout , Simulação de Dinâmica Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Transmissão Sináptica
13.
Elife ; 102021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427183

RESUMO

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX1's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.


Assuntos
Proteínas Munc18/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Fusão de Membrana , Camundongos , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Sinapses/genética , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética
14.
Mol Psychiatry ; 26(11): 6253-6268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931733

RESUMO

Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.


Assuntos
Canabinoides , Sinapsinas , Animais , Canabinoides/farmacologia , Humanos , Camundongos , Receptores de Canabinoides , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas
15.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33952696

RESUMO

Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.


Assuntos
GABAérgicos/farmacologia , Doença de Huntington/genética , Neurônios/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Animais , Benzamidas , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Expressão Gênica , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Transmissão Sináptica/genética , Transcriptoma
16.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539324

RESUMO

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Alelos , Sinalização do Cálcio , Dendritos/metabolismo , Distúrbios Distônicos , Mutação de Sentido Incorreto , Células de Purkinje/metabolismo , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Dendritos/genética , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
17.
J Neurochem ; 156(3): 324-336, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037623

RESUMO

Optogenetic manipulations have transformed neuroscience in recent years. While sophisticated tools now exist for controlling the firing patterns of neurons, it remains challenging to optogenetically define the plasticity state of individual synapses. A variety of synapses in the mammalian brain express presynaptic long-term potentiation (LTP) upon elevation of presynaptic cyclic adenosine monophosphate (cAMP), but the molecular expression mechanisms as well as the impact of presynaptic LTP on network activity and behavior are not fully understood. In order to establish optogenetic control of presynaptic cAMP levels and thereby presynaptic potentiation, we developed synaptoPAC, a presynaptically targeted version of the photoactivated adenylyl cyclase bPAC. In cultures of hippocampal granule cells of Wistar rats, activation of synaptoPAC with blue light increased action potential-evoked transmission, an effect not seen in hippocampal cultures of non-granule cells. In acute brain slices of C57BL/6N mice, synaptoPAC activation immediately triggered a strong presynaptic potentiation at mossy fiber synapses in CA3, but not at Schaffer collateral synapses in CA1. Following light-triggered potentiation, mossy fiber transmission decreased within 20 min, but remained enhanced still after 30 min. The optogenetic potentiation altered the short-term plasticity dynamics of release, reminiscent of presynaptic LTP. Our work establishes synaptoPAC as an optogenetic tool that enables acute light-controlled potentiation of transmitter release at specific synapses in the brain, facilitating studies of the role of presynaptic potentiation in network function and animal behavior in an unprecedented manner. Read the Editorial Highlight for this article on page 270.


Assuntos
Encéfalo/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
18.
Cell Mol Life Sci ; 78(4): 1689-1708, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32734583

RESUMO

OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.


Assuntos
Proteínas de Transporte/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Animais , Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exocitose/genética , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Proteínas Qc-SNARE/genética , Receptores de Esteroides/genética , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Proteína 25 Associada a Sinaptossoma/genética
19.
J Neurosci ; 40(49): 9372-9385, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139401

RESUMO

Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release.SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurotransmissores/metabolismo , Vesículas Sinápticas/ultraestrutura
20.
J Neurosci ; 40(43): 8262-8275, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32928885

RESUMO

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Linhagem da Célula/genética , Sobrevivência Celular/genética , Corpo Estriado/embriologia , Corpo Estriado/crescimento & desenvolvimento , Feminino , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurotoxinas/toxicidade , Gravidez , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...